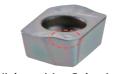
THE NEW VALUE FRONTIER

Micro diameter high feed mills | MFH Micro

MFH Micro

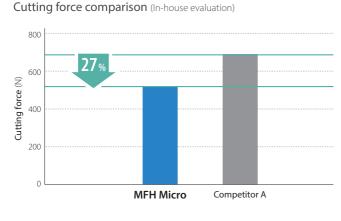
Low resistance and durable against chatter for highly efficient machining

Shortens rough machining times Replaces solid end mills to reduce machining costs Supports small machining centers such as BT30

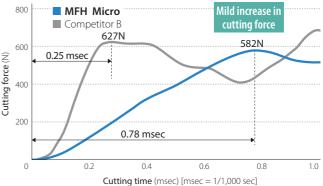


Micro diameter high feed mills

- Low resistance and durable against chatter for highly efficient machining
- Maximum ap 0.5 mm
- Stable high feed machining on a wide range of applications


Stable machining with chattering resistance

Molded convex cutting edge controls initial impact when entering the workpiece.

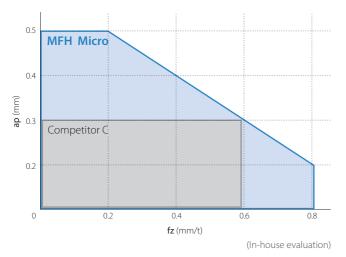


Molded convex cutting edge

e. High precision G class insert

Increase in cutting force when entering workpiece (In-house evaluation)

Cutting conditions: Vc = 120 m/min, fz = 0.6 mm/t, ap \times ae = 0.4 \times 5 mm Cutter dia. ø10 mm, dry; workpiece: C50

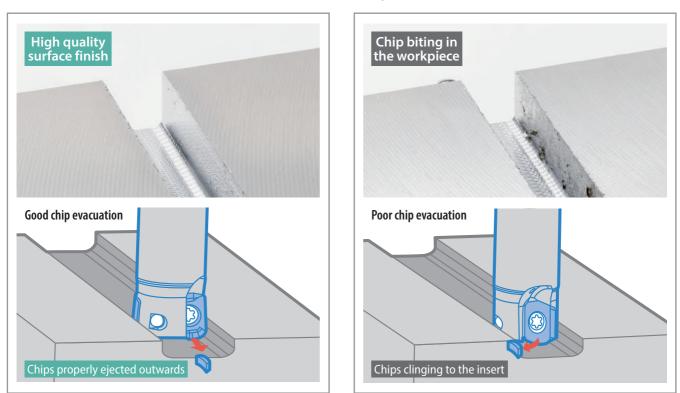

Cutting conditions: Vc = 120 m/min, fz = 0.6 mm/t, ap = 0.4 mm Cutter dia. \emptyset 10 mm, slotting, dry; workpiece: C50

Wide range of machining applications

• Wide range of machining applications with maximum ap 0.5 mm

• Stable machining even with small machining centers

Cutting performance (Cutter dia. ø10 mm)


Supports BT30/BT40

Good chip evacuation

Fine surface by controlling chip biting.

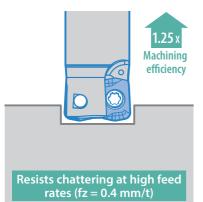
MFH Micro

3

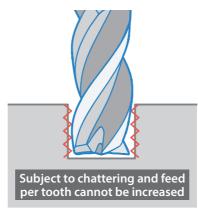
Competitor F

Cutting conditions: cutter dia. $Dc = \emptyset 10 \text{ mm}, Vc = 120 \text{ m/min}, fz = 0.6 \text{ mm/t}, ap = 0.4 \text{ mm} (25 \text{ passes}) \text{ total } 10 \text{ mm}, dry; workpiece: 1.0040 \text{ mm} (25 \text{ passes}) \text{ total } 10 \text{ mm}, dry; workpiece: 1.0040 \text{ mm} (25 \text{ passes}) \text{ total } 10 \text{ mm}, dry; workpiece: 1.0040 \text{ mm} (25 \text{ passes}) \text{ total } 10 \text{ mm}, dry; workpiece: 1.0040 \text{ mm} (25 \text{ passes}) \text{ total } 10 \text{ mm}, dry; workpiece: 1.0040 \text{ mm} (25 \text{ passes}) \text{ total } 10 \text{ mm}, dry; workpiece: 1.0040 \text{ mm} (25 \text{ passes}) \text{ total } 10 \text{ mm}, dry; workpiece: 1.0040 \text{ mm} (25 \text{ passes}) \text{ total } 10 \text{ mm}, dry; workpiece: 1.0040 \text{ mm} (25 \text{ passes}) \text{ total } 10 \text{ mm}, dry; workpiece: 1.0040 \text{ mm} (25 \text{ passes}) \text{ total } 10 \text{ mm}, dry; workpiece: 1.0040 \text{ mm} (25 \text{ passes}) \text{ total } 10 \text{ mm}, dry; workpiece: 1.0040 \text{ mm} (25 \text{ passes}) \text{ total } 10 \text{ mm}, dry; workpiece: 1.0040 \text{ mm} (25 \text{ passes}) \text{ total } 10 \text{ mm}, dry; workpiece: 1.0040 \text{ mm} (25 \text{ passes}) \text{ total } 10 \text{ mm}, dry; workpiece: 1.0040 \text{ mm} (25 \text{ passes}) \text{ total } 10 \text{ mm}, dry; workpiece: 1.0040 \text{ mm} (25 \text{ passes}) \text{ total } 10 \text{ mm}, dry; workpiece: 1.0040 \text{ mm} (25 \text{ passes}) \text{ total } 10 \text{ mm}, dry; workpiece: 1.0040 \text{ mm} (25 \text{ passes}) \text{ total } 10 \text{ mm}, dry; workpiece: 1.0040 \text{ mm} (25 \text{ passes}) \text{ total } 10 \text{ mm} (25 \text{ passes}) \text{ total } 10 \text{ mm} (25 \text{ passes}) \text{ total } 10 \text{ mm} (25 \text{ pass}) \text{ mm} (25 \text{ pass}) \text{ total } 10 \text{ mm} (25 \text{ pass}) \text{ total } 10 \text{ mm} (25 \text{ pass}) \text{ total } 10 \text{ mm} (25 \text{ pass}) \text{ total } 10 \text{ mm} (25 \text{ pass}) \text{ total } 10 \text{ mm} (25 \text{ pass}) \text{ mm} (25 \text{ pass}) \text{ total } 10 \text{ mm} (25 \text{ pass}) \text{ total } 10 \text{ mm} (25 \text{ pass}) \text{ total } 10 \text{ mm} (25 \text{ pass}) \text{ total } 10 \text{ mm} (25 \text{ pass}) \text{ total } 10 \text{ mm} (25 \text{ pass}) \text{ total } 10 \text{ mm} (25 \text{ pass}) \text{ total } 10 \text{ mm} (25 \text{ pass}) \text{ total } 10 \text{ mm} (25 \text{ pass}) \text{ total } 10 \text{ mm} (25 \text{ pass}) \text{ total } 10 \text{ mm} (25 \text{ pass}) \text{ total } 10 \text{ mm} (2$

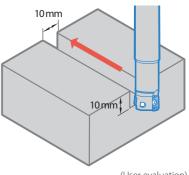
(In-house evaluation)


4 Replaces solid end mills to reduce machining costs

Suppresses chattering and increases milling efficiency.


MFH Micro compared to solid end mills

MFH Micro; Q = 15.3 cc/min

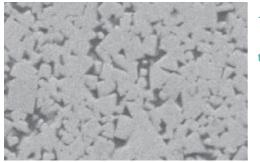

Vc = 150 m/min, fz = 0.4 mm/t ap × ae = 0.4 × 10 mm, dry MFH10-S10-01-2T (2 Inserts) LPGT010210ER-GM (PR1525)

Solid end mill; Q = 12.2 cc/min Vc = 80 m/min, fz = 0.04 mm/tap \times ae = $3 \times 10 \text{ mm}, \text{dry}$ $\emptyset 10 (4 \text{ Flute})$

Mechanical parts - slotting Workpiece: C50

(User evaluation)

MEGACOAT NANO PR1535

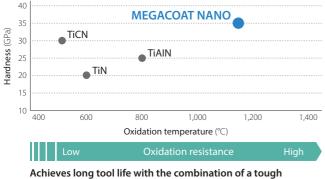

For stable machining of difficult-to-cut materials such as heatresistant alloy, titanium, and precipitation hardened stainless steel

Toughening by a new cobalt mixing ratio

An increase in cobalt content yields a substrate with greater toughness. Fracture toughness values are improved by 23 % over previous grades.

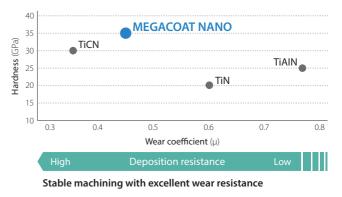
High toughness carbide base material

23 % Fracture toughness

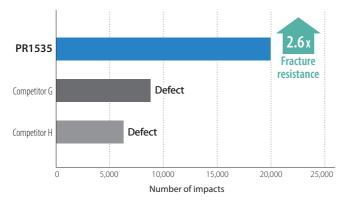

Stability improvement

The coarse grain structure and uniform particle size correspond to improved heat resistance, with conductivity values decreased by 11 %. The uniform structure also reduces crack propagation.

Crack comparison by diamond indenter (In-house evaluation)

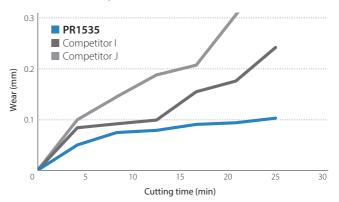


Coating properties (Wear resistance)

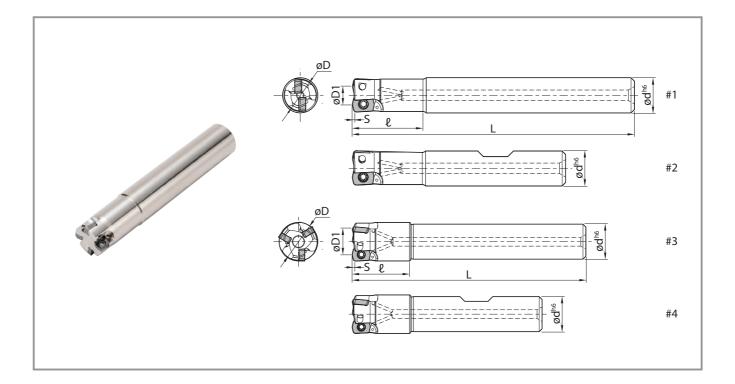


Achieves long tool life with the combination of a tough substrate and a special nano coating layer

Coating properties (Deposition resistance)



Fracture resistance comparison (In-house evaluation)



Cutting conditions: Vc = 120 m/min, fz = 1.5 mm/t, ap \times ae = 0.4 mm \times 2.5 mm Cutting dia. ø10, dry; workpiece: X40CrMoV5-1 (40 to 45 HRC)

Wear resistance comparison (In-house evaluation)

Cutting conditions: Vc = 180 m/min, fz = 0.5 mm/t, ap x ae = 0.3 \times 8 mm Cutting dia. ø10, dry; workpiece: X5CrNi18-10

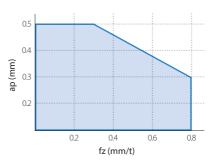
Toolholder dimensions

Shank	Description	Availability	No. of		[Dimensio	ons (mm)		Maximum	Maximum ramping A.R. Coolant hole Shape		Weight	Weight Max. revolution Clamp			
SIIdIIK	Description	Availability	inserts	øD	øD1	ød	L	ł	S	angle	A.n.	hole	Sliape	Sliape	(kg)	(min ⁻¹)	Clamp screw
	MFH08-S10-01-1T	•	1	8	4.2	10	75	16		4°			#1	0.04	20,000		
Standard	MFH10-S10-01-2T	•	2	10	6.2	10	80	20	0.5	3°	5°	Yes		0.04	16,200		
Stallualu	MFH12-S12-01-3T	•	3	12	8.2	12	80	20	0.5 2°	2°	5	res #1	#1	0.06	14,000		
	MFH16-S16-01-4T	•	4	16	12.2	16	90	25		1.2°				0.12	11,400		
Long shank	MFH14-S12-01-3T	•	3	14	10.2	12	80	20	0.5	1.5°	5°	Yes	#3	0.07	12,500		
	MFH08-W10-01-1T	•	1	8	4.2	10	58	16		4°		5° Yes #2		0.03	20,000	SB-1840TRP	
Standard (Weldon)	MFH10-W10-01-2T	•	2	10	6.2	10	60	20	0.5 3° 2° 1.2°	3°	۲°		#2	0.03	16,200		
Stalluaru (Weluoli)	MFH12-W12-01-3T	•	3	12	8.2	12	65	20		2°	5		#Z	0.05	14,000		
	MFH16-W16-01-4T	•	4	16	12.2	16	73	25		1.2°				0.1	11,400		
Oversize (Weldon)	MFH14-W12-01-3T	•	3	14	10.2	12	65	20	0.5	1.5°	5°	Yes	#4	0.05	12,500		

• Available

Spare parts

		Spare parts			
	Clamp screw	Wrench	Anti-seize compound		
Description		ß		Applicable inserts	
MFH01	SB-1840TRP	FTP-6	MP-1	LPGT010210ER-GM	


Applicable inserts

	Shape			Dir	Dimensions (mm)				MEGACOAT NANO		
			А	Т	ød	W	٢٤	PR1525	PR1535	CA6535	
General purpose		LPGT 010210ER-GM	4.19	2.19	2.1	6.26	1.0	•	٠	•	
										 Available 	

Cutting performance

Cutter dia: ø14 to ø16

Recommended cutting conditions ★ 1st recommendation ☆ 2nd recommendation

		Holder		d recommende d ap = 0.3 mm i	ed feed rate (fz: reference value	Recommended ins	ert grade and cutting	speed (Vc: m/min)	
Chipbreaker	Workpiece	MFH08	MFH10	MFH12	MFH14	MFH16	MEGACOAT NANO		CVD coating
		-1T	-2T	-3T	-3T	-4T	PR1525	PR1535	CA6535
	Carbon steel		0.2 – 0.4 – 0.6		0.2.0	F 0.9	★ 120 – 180 – 250	☆ 120 – 180 – 250	—
	Alloy steel		0.2 - 0.4 - 0.6		0.2 – 0.5 – 0.8		★ 100 - 160 - 220	100 − 160 − 220	_
	Mold steel (~40 HRC)		0.2 – 0.3 – 0.5		0.2 – 0.4 – 0.6		★ 80 - 140 - 180	☆ 80 – 140 – 180	_
	Mold steel (40 ~ 50 HRC)	0.2 – 0.25 – 0.3			0.2 – 0.25 – 0.4		★ 60 - 100 - 130	⊷ 60 – 100 – 130	—
	Austenitic stainless steel				0.2 – 0.4 – 0.6		☆ 100 – 160 – 200	★ 100 - 160 - 200	_
GM	Martensitic stainless steel		0.2 – 0.3 – 0.5				_	☆ 150 – 200 – 250	★ 180 - 240 - 300
	Precipitation hardened stainless steel						_	★ 90 - 120 - 150	_
	Gray cast iron	0.2 – 0.4 – 0.6			0.2 – 0.5 – 0.8		★ 120 – 180 – 250	_	_
	Nodular cast iron	0.2 – 0.3 – 0.5			0.2 – 0.4 – 0.6		★ 100 - 150 - 200	_	_
	Ni-based heat-resistant alloy (Inconel®718, etc.)		12 035 03		0.2 0.25 0.4		_	20 − 30 − 50	★ 20 - 30 - 50
	Titanium alloy	0.2 – 0.25 – 0.3			0.2 – 0.25 – 0.4		_	★ 40 - 60 - 80	_

• Machining with coolant is recommended for Ni-base heat-resistant alloy and titanium alloy

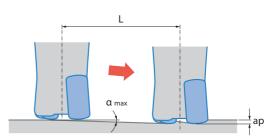
The numbers in bold are the recommended starting conditions Adjust the cutting speed and the feed rate within the above conditions according to the actual machining situation Internal coolant is recommended for slotting applications

Approximate programming radius adjustment

Drawing	Approx. R (mm)	Maximum over machining of radius (mm)	Maximum non-machined portion (mm)
	R1.0	0	0.21
Machining portion Non-machined portion User and the second	R1.2 (Recommended)	0	0.17
	R1.5	0.08	0.1
	R2.0	0.28	0.01

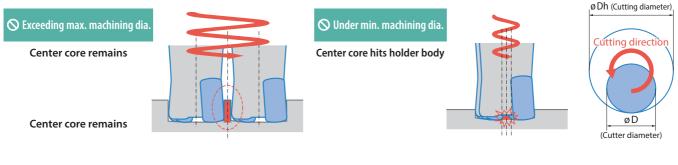
Cutting edge angle: 12°

Ramping reference data


Description	Cutter dia. øD (mm)	8	10	12	14	16
MFH01	Maximum ramping angle α_{max}	4.0°	3.0°	2.0°	1.5°	1.2°
	tan α _{max}	0.070	0.052	0.035	0.026	0.021

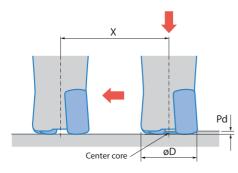
Decrease ramping angle if chips become excessively long.

Ramping


- Ramping angle should be under α_{max} (maximum ramping angle) in the above conditions
- Reduce recommended feed rate in cutting conditions above by 70 %

Helical milling

For helical milling, use between minimum and maximum cutting diameter.

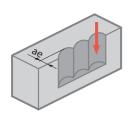


Holder	Min. cutting dia. øDh1	Max. cutting dia. ø Dh2
MFH01	2×D-3.5	2×D-2
		Unit: mm

Keep machine depth per rotation less than max. ap (0.5 mm)

- Use climb milling (See figure on right)
- Feed rates should be reduced to 50 % of recommended cutting condition
- Use caution to eliminate incidences caused by producing long chips

Peck milling



	GM					
Holder	Max. cutting depth (Pd)	Min. cutting length X for flat bottom surface				
MFH01	0.5	øD – 3.5				
	<u> </u>	Unit: mm				

• Reduce feed rate 25 % or less of the recommended conditions until the center core part (unmachined part) is removed.

• When pecking, reduce feed rate per revolution to under f = 0.2 mm/rev.

Vertical milling (Plunging)

Vertical milling

Insert description	Maximum width of cut (ae)	Whe
LPGT01 type	1.7 mm	or les

When plunging, reduce feed rate to fz = 0.2 mm/t r less.

MFH series

Small dia. cutter for high feed machining

- Economical inserts with 4 cutting edges
- High efficiency with small dia. and fine pitch
- High feed machining

High feed machining

Large lineup for high feed machining, large ap and low cutting force.

